Collecting and exhibition of Antarctic organisms at Tokyo Sea Life Park

Hiroshi Nakamura and Satoshi Tada Tokyo Sea Life Park

Introduction

- The theme of the Seven Seas.
- 11 collecting and researches surveys in the Antarctic region.
- 11 collecting in the Antarctic region 1988-2011

Collecting method of Antarctic organisms

- 1. Collecting by Tokyo Sea Life Park.
- 2. Bycatch of the Antarctic krill trawl fishery.
- 3. Cooporation of the Australian Antarctic Division.
- 4. Loan from the institute of Polar Research, Japan.

collecting places

Collecting area:
 King George Island
 1988-2004.

Collecting method at King George Island

• SCUBA: 6mm Dry suit

depth: ~40m

• Trap: Bait Traps

depth: 30-80m

- Fishing: pier of the bay.
- Hand net: At the time of low tide, walking on the shore.

Animal holding at the King George Island

- The cooler boxes (vol. 162L) were used to keep the animals.
- The boxes were placed outdoors and everyday we performed 50% water change.
- Temperature

0 - 10 °C

Water temperature

1.5 - 3.0 °C

Animal holding
At the King George Island.

Collecting area in Antarctic

- 2011
- Antarctic krill trawl
 fishery operation Area:
 Northwest South
 Orkney Islands.

Bycatch of the Antarctic krill trawl fishery

- Area: Northwest of South Orkney Islands.
- Antarctic krill trawl by Fukuei-maru of Nippon Suisan Kaisha, Ltd. Fishes were collected as bycatch.
- Collected fishes were placed in the temporal holding tanks set up on the ship.

Antarctic krill trawl fishing vessel, Fukuei-maru (5200m³) belong to Nippon Suisan Kaisha, Ltd.

Animal holding at the Fukuei-maru

- Holding tanks: five 72L cooler boxes
- Room temperature :

0 - 5°C

• Water temperature :

-1.0 - +1.6°C

holding tanks and collected animals

Transportation

Method

- Plastic bag packing:

 Putting Animals and some
 seawater in the plastic bag,
 charge oxygen gas and seal
 the bag with rubber bands.
- Transport boxes: We used
 the additional thermal insulation into the cooler boxes.
 vol.162L and vol.72L.
- To prevent the water temperature to increase, ice blocks were added in each boxes.
- A 1/3 water change.

Transportation (Route)

- Collections were transported from Punta Arenas (Chile) to Narita (Japan) via Santiago (Chile) and a city in North America by the air cargo.
- The shipping boxes were opened and re-packed once at the Santiago airport to performed a water change.

Transportation result

 It has taken 74 to 104 hours from the packing to open the boxes.

Transport survival rate was 96% on average.

King George Is.	year	1988	1989	1990	1991	1992	1993	1998	1999	2002	2004
	survival rate	100	89	96	100	97	100	98	100	99	78
Fukuei-	year	2011									

maru

survival

rate

27

Water temperature data during transported from Fukuei-maru

Collected species

Chordata 🗡	Lepidonotothen nudifrons	Nemertea	Parborlasia corrugatus		Gammaridae sp.
(Actinopterygii)	Notothenia coriiceps	Mollusca	Laternula elliptica		Amphipoda sp.
	Notothenia rossii		Yoldia eightsi.	Echinodermata	Ophionotus victoriae
	Pagothenia borchgrevinki		Nacella concinna		Ophionotus sp.
	Trematomus newnesi		Neobuccinum eatoni		Odontaster validus
	Trematomus hansoni		Trophon sp.		Sterechinus neumayeri
*	Trematomus eulepidotus		Margarella antarctica		Spatangoida sp.
	Trematomus bernacchii		Harpovoluta charcoti		Dendrochirotida spp.
	Harpagifer antarcticus		Neogastropoda spp.		Holothuroidea sp.
*	Chionodraco rastrospinosus		Nudibranchia spp.	Chordata	Distaplia cylindrica
Porifera	cf. Dendrilla sp.	Annelida	Cirratulidae sp.	(Urochordata)	Ascidiacea spp.
	cf. Ciocalypta sp.		Sabellida sp.	Algae	Desmarestia anceps
	Demospongiae spp.	Arthropoda	Pantopoda spp.		Desmarestida ligulata
Cnidaria	Isotealia antarctica		Glyptonotus antarcticus		Desmarestida willii
	Urticinopsis antarctica		Serolis spp.		Leptosomia simplex
	Pennatulacea spp.		Paraceradocus sp.		Iridaea chordata
Brachiopoda	Brachiopoda sp.		Rhodophyta spp.		Ascoseira mirabilis

Exhibition and Holding systems

tank	Quantity	°C	salinty	рН	NO3-N mg/L	main animals
Exhibition-1	1.1m ³	1.4-2.1	33.21-34.60	7.92-8.15	0.15-0.24	Notothenia coriiceps
Exhibition-2	0.9m ³	1.2-1.6	34-34.58	7.05-8.04	0.16-0.69	Glyptonotus antercticus
Holding system1	1.5m ³	1.2-1.8	33.78-34.46	7.95-7.98	1.4-2.0	Neobuccinum eatoni
Holding system2	1.5m3	1.2-1.8	30.17-34.52	7.85-7.88	0.99-3.2	Sterechinus neumayeri
Holding system3	2.4m ³	0.8-1.4	33.78-34.54	7.87-7.96	0.22-1.5	Harpagifer antarcticus
Holding system4	0.9m ³	1.6-2.1	34.11-34.73	7.85-8.04	0.26-1.6	Notothenia coriiceps

Husbandry & Reproduction

Notothenia coriiceps

species	year
Notothenia coriiceps	>20
Isotealia antarctica	>20
Parborlasia corrugatus	>20
Neobuccinum eatoni	>18
Harpagifer antarticus	>8
Lepidonotothen nudifrons	>8
Nacella concinna	>8
Harpovoluta charcoti	>8

Species	spawning	>one year
Notothenia coriceps	0	
Harpagifer antarcticus	0	0
Serolis sp	0	0
Glyptonotus antercticus	0	0
Neobuccinum eatoni	0	0
Panerozonia sp	0	0

Exhibition and Observation 1.

Exhibition and Observation 2.

Spawning of Harpagifer antarcticus.

The egg guarding behaviors and the egg hatchings have been observed in either the exhibit tank or holding tank every year for more than 5 years.

We had successfully grown 8 fishes.

Harpagifer antarcticus

The larvae-carrying behavior 1.

The larvae-carrying behaviors 2.

